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We calculate the electronic band structure of ABA-stacked trilayer graphene in the presence of external
gates, using a self-consistent Hartree approximation to take account of screening. In the absence of a gate
potential, there are separate pairs of linear and parabolic bands at low energy. A gate field perpendicular to the
layers breaks mirror reflection symmetry with respect to the central layer and hybridizes the linear and
parabolic low-energy bands, leaving a chiral Hamiltonian essentially different from that of monolayer or
bilayer graphene. Using the self-consistent Born approximation, we find that the density of states and the
minimal conductivity in the presence of disorder generally increase as the gate field increases, in sharp contrast
with bilayer graphene.
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Pioneering experiments1–4 demonstrated graphene-based
transistors using a back gate to vary the carrier density con-
tinuously from electron to hole channels, with a minimal
conductivity for nominally zero carrier density. The switch-
ing of a graphene-based transistor would be improved by
opening an energy gap between the conduction and valence
bands, possibly by lateral confinement of electrons in etched
structures5–8 or by employing gates to induce interlayer
asymmetry in bilayer graphene.9–16 Recently, experimental
attention has turned toward the properties of ABA-stacked
trilayer graphene �Fig. 1�a��.17–19 Theory suggests that the
bands are of two separate types:10,11,20–23 two almost-linear
bands reminiscent of the bands in monolayer graphene and
four parabolic bands similar to those in bilayer graphene.
This raises the expectation that the electronic behavior will
display no new features as compared to monolayer or bilayer
graphene.

In this paper, we show theoretically that the response of
ABA-stacked trilayer graphene to external gate potentials is
in fact qualitatively different from that in mono- or bilayer
graphene. We use an effective-mass model to self-
consistently determine the electronic band structure, and we
show how the breaking of mirror reflection symmetry by
interlayer asymmetry causes hybridization of the linear and
parabolic bands. Rather than opening a gap, as in bilayer
graphene,9 this leaves two bands near zero energy which
support chiral quasiparticles. Employing a self-consistent
Born approximation to estimate the minimal conductivity as
a function of interlayer asymmetry, we find that the conduc-
tivity generally increases as asymmetry increases, in sharp
contrast with bilayer graphene as illustrated in Fig. 1�b�.

A description of trilayer graphene in the presence of ex-
ternal gates must include two parameters that take into ac-
count differences in the potentials V1, V2, and V3 of the three
layers. The first, �1=−e�V1−V3� /2, describes the average
energy difference between each adjacent layer,10,11,23 while
the second, �2=−e�V1−2V2+V3� /6, describes the difference
between the energy of the central layer and the average of
the outer layers. We model the effect of back and top gates
by considering the trilayer as three conducting parallel plates
as illustrated in Fig. 1�c�, with respective electron densities

n1, n2, and n3, located at x=−d, 0, and +d, respectively,
where d is the interlayer spacing, and the permittivity of the
trilayer interlayer spaces �without the screening effect of
�-band electrons of the trilayer graphene� is �r. The back
�top� gate at x=−Lb �x= +Lt�, held at potential Vb �Vt�, is
separated from the trilayer by a dielectric medium with rela-
tive permittivity �b ��t�. Using elementary electrostatics, we
relate the external gate potentials, the electron densities on
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FIG. 1. �a� Schematic of the ABA-stacked trilayer lattice con-
taining six sites in the unit cell, A �white circles� and B �black
circles� on each layer, showing the Slonczewski-Weiss-McClure pa-
rametrization �Ref. 24� of relevant couplings �0–�5. �b� The con-
ductivity versus external asymmetry �1

�ext�, calculated for trilayer
and bilayer graphene using the self-consistent Born approximation
and the band model including �0 and �1. �c� Schematic of trilayer
graphene �three thin black lines at x=−d ,0 ,d� with top and bottom
gates �thick black lines at x=Lt ,−Lb� separated from the trilayer by
dielectric media �gray shaded areas�.
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the layers, and the interlayer asymmetry parameters as fol-
lows:

�bVb

Lb
+

�tVt

Lt
= e�n1 + n2 + n3� , �1�

�1 =
�tVt

Lt
−

�bVb

Lb
+

e2d

2�r
�n1 − n3� , �2�

�2 = −
e2d

6�r
n2. �3�

In the following, we use the total electron density ntot=n1
+n2+n3 and �1

�ext� as external parameters instead of Vt and
Vg, where �1

�ext�=�tVt /Lt−�bVb /Lb is the value of �1 that
would occur if screening were negligible.

We model ABA-stacked trilayer graphene as three
coupled honeycomb lattices including pairs of inequivalent
sites �A1, B1�, �A2,B2�, and �A3,B3� in the bottom, center,
and top layers, respectively. The layers are arranged accord-
ing to Bernal �A-B� stacking24 �Fig. 1�a��, such that sites B1,
A2, and B3 lie directly above or below each other. We em-
ploy an effective-mass model adopting the Slonczewski-
Weiss-McClure parametrization,24 where each parameter is
related to relevant coupling in the tight-binding model: �0
describes nearest-neighbor �Ai-Bi for i= �1,2 ,3�� coupling
within each layer, �1 describes strong nearest-layer coupling
between sites �B1-A2 and A2-B3� that lie directly above or
below each other, �3 ��4� describes weaker nearest-layer
coupling between sites A1-B2 and B2-A3 �A1-A2, B1-B2,
A2-A3, and B2-B3�. With only these couplings, there would
be a degeneracy point at each of two inequivalent corners K�

of the hexagonal Brillouin zone25 but this degeneracy is bro-
ken by next-nearest-layer couplings �2 �between A1 and A3�
and �5 �between B1 and B3� and �, which is the on-site
energy difference between A1,B2,A3 and B1,B2,B3. Note
that the parameter � often used in models of three-
dimensional �3D� graphite is given by �=�+�2−�5. In
trilayer graphene, the presence of a surface may induce a
modification in the value of the band parameters as com-
pared to those in bulk graphite. Here, parameter �2=−e�V1
−2V2+V3� /6, takes into account a possible difference be-
tween the energy of the central layer and the average of the
outer layers, and, in general, surface effects may contribute
to a nonzero value of �2.

In a basis with components �A1, �B1, �A2, �B2, �A3, and
�B3, the ABA-stacked trilayer Hamiltonian is

H̃ =�
U1 v�† − v4�† v3� �2/2 0

v� U1 + � �1 − v4�† 0 �5/2
− v4� �1 U2 + � v�† − v4� �1

v3�† − v4� v� U2 v3�† − v4�

�2/2 0 − v4�† v3� U3 v�†

0 �5/2 �1 − v4�† v� U3 + �

� ,

�4�

where operator �=	px+ ipy is related to the in-plane momen-
tum p= �px , py� �Ref. 25�; effective velocities are v

= �	3 /2�a�0 /
, v3= �	3 /2�a�3 /
, and v4= �	3 /2�a�4 /
; Ui
=−eVi; and 	= �1 is the valley index K�. Exploiting mirror
reflection symmetry of the lattice in the plane of its central
layer �Fig. 1�a��, we perform a unitary transformation to a
basis consisting of linear combinations of the atomic
orbitals,22 namely, ��A1−�A3� /	2, ��B1−�B3� /	2, ��A1
+�A3� /	2, �B2, �A2, and ��B1+�B3� /	2:

H = 
Hm D

DT Hb
�, D = 
�1 0 0 0

0 0 0 �1
� , �5�

Hm = 
�2 − �2/2 v�†

v� �2 − �5/2 + �
� , �6�

Hb =�
�2 + �2/2 	2v3� − 	2v4�† v�†

	2v3�† − 2�2 v� − 	2v4�

− 	2v4� v�† − 2�2 + � 	2�1

v� − 	2v4�† 	2�1 �2 + �5/2 + �
� ,

�7�

where the average on-site energy �U1+U2+U3� /3 has been
set equal to zero. The Hamiltonian H has a 2�2 block Hm
and a 4�4 block Hb on the diagonal, connected by a simple
off-diagonal block D. Block Hm is similar to the Dirac-type
Hamiltonian of monolayer graphene and it contributes two
bands near zero energy, whereas block Hb is reminiscent of
the Hamiltonian of bilayer graphene,9 except that terms pro-
portional to �1, �3, and �4 appear with a factor of 	2.22 The
latter gives two bands split away from zero by energy �	2�1
and two bands near zero energy.

The monolayerlike block has wave functions possessing
odd mirror reflection symmetry, while the wave functions of
the bilayer part are even. Since the interlayer asymmetry �1
is the only parameter that breaks mirror reflection symmetry,
its role is qualitatively different from the other parameters,
coupling the monolayerlike and bilayerlike blocks. For large
�1, two of the low-energy bands, related to orbitals ��A1
−�A3� /	2 and ��A1+�A3� /	2, split away from zero by en-
ergy �� ��1 at the K point, leaving only two bands near
zero, associated with 
�= ���B1−�B3� /	2,�B2�T. To obtain
an approximate Hamiltonian Heff for 
�, we denote H2 as the
diagonal block of Hamiltonian H corresponding to these two
low-energy components, H4 as the 4�4 diagonal block cor-
responding to the high-energy components, and V as the off-
diagonal 2�4 block coupling H2 and H4. The Schrödinger
equation for 
� can be expanded up to first order in � as
�H2−VH4

−1V†�
�=�S
�, with S
1+VH4
−2V†. Then, the ef-

fective Hamiltonian for 
=S1/2
� becomes Heff�S−1/2�H2
−VH4

−1V†�S−1/2. For the moment, we focus on the role of �1
by considering �2=�2=�3=�4=�5=�=0. For large enough
�1 ���1�� ��1�� ����, Heff is written as

Heff � 
0 X†

X 0
� ,
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X = −
�1v�

	2�1

1 −

v2��†

�1
2 �
1 +

v2��†

�1
2 �−1/2

.

For plane-wave eigenstates at zero magnetic field, ��† is
just a number, p2. The first factor of �=	px+ ipy in operator
X ensures that such eigenstates are chiral, 

= �e−i	�/2 , �	ei	�/2�T /	2, with �=tan−1�py / px�. The expres-
sion for the eigenenergies is

� � �
vp

	2�1

�v2p2 − �1
2�

	v2p2 + �1
2

, �8�

which generalizes Eq. �22� of Ref. 11, showing that there is a
small overlap ����1

2 /�1 between the two low-energy bands
that cross at p=�1 /v.11 This behavior contrasts with that of
bilayer graphene, where interlayer asymmetry introduces an
energy gap between the low-energy bands9 and tends to sup-
press the chiral nature of quasiparticles in them.

For given parameters �1 and �2 and fixed total density
ntot, the electron densities n1, n2, and n3 may be determined
by summing ���Ai�2+ ��Bi�2� /L2 over the occupied eigenstates
of Hamiltonian �4�. However, such densities are also related
to �1 and �2 through Eqs. �2� and �3�, so it is necessary to
solve this set of equations self-consistently in order to obtain
values of �1 and �2 for given external parameters ntot and
�1

�ext�. A similar procedure has been applied to bilayer
graphene12–14 and to many-layered graphene.26 This Hartree
approximation neglects effects including exchange interac-
tion, possible deformation of atomic orbitals in the applied
electric field, and the role of � orbitals in screening, but
comparison with density-functional theory13 in bilayers sug-
gests that it is qualitatively accurate.

For �2=�3=�4=�5=�=0 with ntot=0, it is possible to
perform a linear-response calculation for infinitely small
�1

�ext�. Within the first order in �1, we have n1−n3=��1 with

� = �
�,��

f����
2����

�H

��1
�����2

�� − ���
= −

gvgs

2	2�

�1

�
v�2 , �9�

where gs=gv=2 are the spin and valley degeneracies, respec-
tively, ��� and �� are the eigenstates and eigenenergy of the
Hamiltonian without �1 or �2, and f��� is the Fermi distri-
bution function with zero Fermi energy. Using Eqs. �2� and
�3�, we obtain the self-consistent solution �1=�1

�ext� /�eff,
with �eff=1− �e2d /2�r��. �2 is never induced. Typical pa-
rameters v=1.0�106 m /s, �1=0.4 eV, d=0.334 nm, and
�r=2 give 1 /�eff�0.61.

To determine the band structure taking into account all the
parameters, we find �1 and �2 self-consistently by employ-
ing an iterative numerical approach. We first use �1=�1

�ext�

and �2=0 as initial values in Hamiltonian �4� and determine
the Fermi energy so that the total density is equal to ntot.
Then we calculate ni �i=1,2 ,3� from the occupied eigen-
states, which give a new set of �1 and �2 through Eqs. �2�
and �3�. We iterate this process until �1 and �2 converge.

Figures 2�a� and 2�c� show the self-consistent band struc-
tures at zero external field ��ext�=0 and zero doping ntot=0.
To illustrate the role of the extra band parameters we com-

pare �a� the simple model including only �0 and �1 and �c�
the full-parameter model with �2=−0.05�1, �5=0.1�1, �
=0.125�1, v3���3�=0.1v, and v4���4�=0.014v �typical val-
ues quoted for bulk graphite24�. The plots show the vicinity
of zero energy, covering the monolayerlike band and the
lower branches of the bilayerlike band. In �c�, we see that �2,
�5, and � shift the center of the monolayerlike band upward
in energy relatively to the bilayerlike band. Also, the trigonal
warping effect due to �3 is observed as a difference between
�=tan−1�py / px�=0 and � /6.9 Figures 2�b� and 2�d� display
the corresponding plots in the presence of a finite external
field �1

�ext�=0.5�1. The values of �1 determined self-
consistently are shown in the lower side of each plot. In
every case the screening ratio �1 /�1

�ext� is about 0.6, which is
close to the linear-response theory. For Fig. 2�b�, where only
�0 and �1 are included, there is a small overlap at zero en-
ergy described by Eq. �8�. In the full-parameter model �d�,
there is a similar amount of band overlap, while the exact
magnitude of momentum at the crossing point vp��1 varies
with angle � in a trigonal manner, and there is a tiny gap at
those crossing points. In �d�, the self-consistent calculations
yield tiny �2�0.01�1 due to nonzero �2, �5, and �.

For each band structure we estimate the density of states
�DOS� and conductivity using the self-consistent Born
approximation.27,28 We assume that the scatterers are on-site
potentials localized on each layer, which is modeled by

V�r�=�m=1,2,3�iui��r−ri�P̂�m�, where ui and ri= �xi ,yi� are
the amplitude and the two-dimensional position of the ith

scatterer, respectively, and P̂�m� is the projection operator
onto the mth layer. We neglect intervalley scattering between
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FIG. 2. Self-consistently calculated band structures in trilayer
graphene near the K point, with ntot=0. Left plots are for the model
including only �0 and �1, with �a� no asymmetry �1

�ext�=0 and �b�
finite external asymmetry �1

�ext�=0.5�1. Right plots are for the full-
parameter model including �i �i=1,2 , . . . ,5� and �, with �c� �1

�ext�

=0 and �d� 0.5�1. Dashed and solid curves represent �=0 and � /6.
The self-consistently calculated value of �1 is shown in the lower
side of each plot. The thin horizontal line shows the Fermi energy.
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K�. The disorder strength is characterized by W
=nimpu

2 / �4�
2v2�,27 where nimp is the total number of scat-
terers over all the layers, and u= �ui

2�. For the model with
only �0 and �1, the energy scale for the level broadening at
zero energy is given by ���� /	2�W�1. Following Ref. 27,
we compute the self-energy and the vertex corrections for the
velocity operators, and calculate the conductivity using the
Kubo formula.

Figures 3�a� and 3�c� show the DOS as a function of �1
�ext�

at ntot=0, for several values of the disorder strength W. The
left and right panels correspond to the simple model with �0
and �1, and the full-parameter model discussed previously,
although the behavior in each case is similar, DOS increases
with �1

�ext�. Figures 3�b� and 3�d� are plots of the conductivity
corresponding to Figs. 3�a� and 3�c�, respectively. The gen-
eral trend is for an increase in conductivity as �1

�ext� in-
creases, except for the vicinity of �1

�ext�=0 in panel �d�. This
may be roughly understood by considering the relation �
=e2�FvF

2� /2, with velocity vF, DOS �F, and relaxation time �
at the Fermi energy. When we assume that all the states on
the Fermi energy are equally mixed by disorder, we have �
��F

−1, suggesting that the conductivity is determined by vF
2 .

The dispersion, Eq. �8�, approximates, in regions far from the

origin vp� ��1�, to �� � �v2p2−3�1
2 /2� / �	2�1�, showing

that the electron and hole bands are pushed toward zero en-
ergy by the introduction of �1. This leads to an increase in
the expectation value of the band velocity in a disorder-
broadened energy window near �=0, and thus the conductiv-
ity at the charge neutral point is enhanced.

In the simple �0-�1 model �Fig. 3�b��, the conductivity at
�1

�ext�=0 takes a universal value �=3gvgse
2 / �2�2
� indepen-

dently of W. This is because the Fermi energy coincides with
the degeneracy point of the monolayer and bilayer bands,
and the value is indeed equal to the summation of the mini-
mum conductivity of monolayer graphene27 and that of bi-
layer graphene28 estimated in the self-consistent Born ap-
proximation. In Fig. 3�d�, for the full-parameter model, the
conductivity is largely enhanced around �1

�ext�=0, because, as
observed in Fig. 2�c�, the Fermi energy crosses the off-center
part of the monolayerlike band making a large contribution
to the typical band velocity. The conductivity drops sharply
as �1

�ext� grows from zero as the monolayer band is gapped
away. When �1

�ext� is increased further, the conductivity
grows similarly to, but a little more slowly than, Fig. 3�b�,
because of the tiny gap at the band crossing point observed
in Fig. 2�d�. The differences between Figs. 3�b� and 3�d�
become smaller for larger W, as disorder broadening masks
details dependent on the precise values of band parameters.

To conclude, we have shown that the breaking of mirror
reflection symmetry by interlayer asymmetry �1 in ABA-
stacked trilayer graphene causes hybridization of the linear
and parabolic bands, leaving just two bands in the vicinity of
zero energy. The band hybridization produces an increase in
density of states and typical band velocity with asymmetry
�1, leading to an increase in minimal conductivity in quali-
tative agreement with recent transport experiments.19 As
demonstrated in Fig. 1�b�, which compares the conductivities
of trilayer and bilayer graphene, the response of trilayers to
gate-induced asymmetry is in sharp contrast with bilayers,
where the conductivity is suppressed by a perpendicular
electric field owing to the opening of a gap between the
electron and hole bands.16
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